Genetic Variation Exercises

SNPs and CNVs

Learning Objective:

- Run SNP searches in VEuPathDB
- Explore SNP search parameters and their effect on search results
- Use SNP searches to identify genes that are under diversifying or stabilizing selection
- Run CNV searches in VEuPathDB
- Explore CNV search parameters
- Use CNV searches to identify regions of a genome that exhibit duplications or deletions.

Single Nucleotide Polymorphisms (SNPs): single nucleotide changes between isolates or strains. SNPs have different functional effects with most having no consequential effect on gene function. SNPs may directly affect protein function when they are non-synonymous (results in a change in the amino acid; missense) or when they are cause a premature stop codon (nonsense). SNPs that do not fall within genes are non-coding (between genes or intronic). These types of SNPs may still affect splicing, mRNA stability, transcription, etc.

Copy number variation (CNV): variation in copy number of genes or regions of a genome. CNVs may be result of deletions or duplications. *See appendix for more information.*

SNP Searches

In VEuPathDB SNPs can be used to characterize similarities and differences within a group of isolates or that distinguish between two groups of isolates. They can also be utilized to identify genes that may be under evolutionary pressure, either to stay the same (purifying selection) or to change (diversifying or balancing selection). Isolates are assayed for SNPs in VEuPathDB by two basic methods; re-sequencing and then alignment of sequence reads to a reference genome or DNA hybridization to a SNP-chip array (available in PlasmoDB only). In these exercises we'll explore both methods and ask a variety of questions to identify SNPs or genes of interest. If you do not understand the purpose of a parameter, please remember to mouse over the "?" icon and/or read the more detailed description at the bottom of the question page.

- 1. Identify *T. gondii* genes that contain at least 20 nonsynonymous SNPs. For this exercise use http://toxodb.org
 - *a.* Start by running a search for genes based on SNP characteristics this search can be found under the 'Genetic Variation' category.

arch for	Overview of Resources and Tools
snp 🗶 🖉	Take a Tour Getting Search Genome Transcriptions Phenotypic Analyze My Downloads How
Genes	Started Strategies Browser Resources Data Data Submit
Genetic variation	Getting Started
SNPs	VEuPathDB is packed with data, tools and visualizations that can help answer your research questions. We gather data from
Q Differences Between Two Groups of Isolates	hang sources, analyze according to standard worknows, and present the results to you to mine in a point and click interface. Here's how to get started:
Olifferences Within a Group of Isolates Gene IDs Genomic Location	SITE SEARCH: Explore the site; find what you need Enter a term or ID in the site search box at the top of any page. The site search finds documents and records that contain you term and returns a summary of categorized matches. Its easy to find genes, pathways, searches, data sets and more with the site search.
Q SNP ID(s)	Verad More

- *b.* Select Toxoplasma gondii ME49 from the drop-down list. Notice how the sample information changes when you change organism.
- *c.* In the sample section, select all available samples.
- *d.* Change the SNP class to Non-synonymous and the 'number of SNPs of above class' field to 20.

🕜 Organism										
Toxoplasma gondii ME49		_								
Samples										
65 Samples Total expand all (colopee al Prod a filter Q 0 Ill data set Lat Collection year Ill Country	65 of data A dat	65 Samples selected data set ∞ set a item that is an aggregate of other data items of the sep checked values at top	same type that	have somet	thing in co	ommor	n. Averages	and distributions can be deter	nined for data sets.	
Sample source		↓≟ data set	0 Si	imples 🕜	0	Sa	mples 😮	Distribution 😮	9	6 😧
Sample			65	(100%)		65	(100%)			
 Organism under investigation 		Aligned genomic sequence reads - RH Strain	1	(2%)		1	(2%)		(1	100%)
DNA sequencing		Strains		100.14		012	100.14			
	<	Toxoplasma gondii ME49 Genome Sequence and Annotation	1	(2%)		1	(2%)	1	(1	100%)
	<	Toxoplasma gondii strain CZ clone H3 aligned genome sequence	1	(2%)		1	(2%)	1	(1	100%)
expand all collepse all										
80%										
Minor allele frequency >=										
0										
Percent isolates with a base call >=										
20										
SNP Class										
Non-Synonymous 😋										
Number of SNPs of above class >=										
20										

e. How many genes did you return? Which gene has the highest number of non-synonymous SNPs? (*hint*: sort the non-synonymous SNP columns).

Unnamed Search Strategy * 🥜									
SNPs 3,846 Genes Step 1								C C B < 8	×
3,184 Genes (2,934 ortholog groups) Organism Filter	Revise	this searc Gene Re	h sults Genome Vie	w Analyze Res	ults				
select all clear all expand all collapse all			4 1 2	3 64	Rows per page: 50	ᅌ 🕹 Do	wnload 🔒 A	dd to Basket 🔅 Add Colu	mns
Hide zero counts									
Search organisms Q	0 4 -		Gene ID	Transcript ID	Product Description 2 3 4	🗘 Chromosome 🕲 📠		Nonsynonymous O	÷
Cystoisospora Cystoisospora suis strain Wien I Hammondia Hammondia tele N H 24	sm Filter	-	TGME49_280660	TGME49_280660- t26_1	HECT-domain (ubiquitin- transferase) domain- containing protein	VIIa	2878	1417	846
Hammondia nammondi strain H.H.34 Neospora Neospora caninum Liverpool	Organi:		TGME49_248510	TGME49_248510- t26_1	hypothetical protein	XII	1984	1054	628
▹ Sarcocystis	0 ∰ 4		TGME49_313630	TGME49_313630- t26_1	hypothetical protein	xı	1837	981	571
Toxoplasma gondii AR	0								

- **f.** What happens if you revise this search and change the "Percent isolates with a base call >=" field to 100?
- **g.** How many of these genes have a predicted secretory signal peptide? (*hint*: add a step that identifies all genes with a signal peptide).
- h. What kinds of genes are in this result list? One way to determine if you have naything enriched in your results is to run an enrichment analysis. Click on the "Analyze Results" tab then compare the results you get from the GO enrichment and from the Word enrichment, we will disucss these results.

2. Identifying SNPs between fungal isolates collected in distinct geographical areas

For this exercise use https://fungidb.org

The example described below identifies SNPs in *Coccidioides posadasii* (*C. posadasii*) str. Silveira isolates. Coccidioidomycosis, also known as Valley fever, is caused by two closely related species – *C. immitis* and *C. posadasii*. The disease is associated with high morbidity and mortality rates that affects tens of thousands of people each year. The two fungal species are endemic to several regions in the Western Hemisphere, but recent epidemiological and population studies suggest that the geographic range of these fungal species is becoming wider.

a) Identify SNPs based on Differences Between Two Groups of Isolates

- From the Search for..., navigate to the Identify SNPs based on Differences
- Between Two Groups of Isolates.
 From the drop-down menu select Coccidioides posadasii str. Silveira
- From the *Data set* check the box to select the data set titled "SNP calls on WGS Coccidioides posadasii isolates from regions bordering the Caribbean Sea". More information about the

dataset: https://fungidb.org/fungidb/app/record/dataset/DS_d27c9dd420

- Next, click on the *Country* option and for the first group select Mexico and United States of America
 - For the second group (Set B isolates), use the same dataset and set the country parameter to Venezuela.

≣ <u>Country</u>	Keep checked values at top
≔ City, village, or region	
i≣ Host organism	
i≣ data set	
Sample collection	Mavies
Sample	Mexico
Organism under investigation	United States of America
DNA sequencing	Venezuela
	Argentina
	Brazil
	Guatemala
	Paraguay

• Set your search stringency: Major allele frequency = 90 and Percent of isolates with base call = 70 for both groups. Feel free to come back to this step and choose different settings to see how it affects your search.

Details for step Two Groups 19824 SNPs	
Organism	Coccidioides posadasii str. Silveira
Set A Isolates	data set: SNP calls on WGS Coccidioides posadasii isolates from regions bordering the Caribbean Sea.
	Country: United States of America, Mexico
Set A read frequency threshold >=	80%
Set A major allele frequency >=	90
Set A percent isolates with base call >=	70
Set B Isolates	data set: SNP calls on WGS Coccidioides posadasii isolates from regions bordering the Caribbean Sea.
	Country: Venezuela
Set B read frequency threshold >=	80%
Set B major allele frequency >=	90
Set B percent isolates with base call >=	70

The search strategy returns SNPs rather than genes, which are classified by genomic location within the results table. When individual SNPs fall within a gene, its corresponding Gene ID is listed next to the SNP record.

	Location 8	Gene ID 😢	Position in protein	Set A Major Allele	Set A Major 8 Allele Pct	Set A Major Product	Set B Major Allele	Set B Major 😮	Set B Major Product
B NGS_SNP.GL636538.999	GL636538: 999	N/A	N/A	с	100	-	т	100	-
B NGS_SNP.GL636538.962	GL636538: 962	N/A	N/A	G	100	-	A	100	
B NGS_SNP.GL636538.96	GL636538: 96	CPSG_10222	30	А	100	s	G	100	L
B NGS_SNP.GL636538.95	GL636538: 95	CPSG_10222	30	с	100	s	т	100	L
B NGS_SNP.GL636538.947	GL636538: 947	CPSG_10222	314	А	100	Q	G	100	*
B NGS_SNP.GL636538.916	GL636538: 916	CPSG_10222	304	G	100	v	A	100	I
G NGS_SNP.GL636538.897	GL636538: 897	CPSG_10222	297	G	100	R	А	100	G
G NGS_SNP.GL636538.890	GL636538: 890	CPSG_10222	295	с	100	s	т	100	F

- To examine a SNP record page, click on the NGS_SNP.xxxx link.
- Let's take a look at the SNP record page for SNP: <u>NGS_SNP.GL636486.1005705</u>
 - If your results table looks somewhat different and you cannot easily locate the SNP mentioned above – can you think of other ways to locate this SNP within your results? *Hint: Click Add Step and look up the SNP by its ID.*

SNP location, allele summary, associated GeneID, major and minor allele records can be found at the top of the page, followed by DNA polymorphism summary and SNP records table that is searchable by isolate IDs.

Add to basket 📾 🛛 Add to favorites ★ 🔹 Download SNP 📩
SNP: NGS_SNP.GL636486.1005705
Organism: Coccidioides posadasii str. Silveira
Location: GL636486: 1,005,705
Type: coding
Number of Strains: 77
Gene ID: CPSG_00342
Gene Strand: reverse
Major Allele: T (0.91)
Minor Allele: C (0.09)
Distinct Allele Count: 2
Reference Allele: T
Reference Product: Y 282
Allele (gene strand): A
SNP context: GCTGCTGAGTGTGCGGGGAGATATTTGGGAGTAGAGTGTGGCTGTGAGGAAAGGGAGAGAGA
SNP context (gene strand): TCTCTCTCCCTTTCCTCACAGCCACACTCTACTCCCCAAATATCTCCCCGCACACTCAGCAGC

Genomic location, SNP type and aligned reads are also displayed in JBrowse:

.005,000	1,007,500	1.01	0.000
			0,000
sporter ⊐→ CPSG_00343-t2t CPSG_00343 conserved hyp	CPSG CPSC sepB bothetical protein	_00344+t26_1 ←□	
*******	* **** * * * *	• • • • • • •	🕨 🕴 🔶
** * * *	• • •		• •
	sponter CPSG_00343+22 → CPSG_00343+22 CCPSG_00343+22 conserved hy; ★ ★ ● ★ ★ ● ★ ★ ● ★ ◆ ●	sporter	sporter → CPSG_00343126_1 + CPSG_00343126_1 CPSG_00343126_1 + CPSG_00343 conserved hypothetical protein

SNPs are denoted by diamonds that are colored based on the coding potential under DNA polymorphism in the Genetic variation section (see pre-workshop module for more information).

Examine SNP record page further. Note that in addition to the US, Mexico, and Venezuela isolates, the SNP records table also contains information for other isolates collected elsewhere.

Search this table	٩)			
↓ ↑ Geographic Location	Jî #Alleles 🕜	↓↑ Major Allele	$_{\downarrow\uparrow}$ Minor Allele	\downarrow_{\uparrow} Other Allel
United States of America	51	T (1)	N/A	N/A
Mexico	10	T (1)	N/A	N/A
Venezuela	7	C (1)	N/A	N/A
Guatemala	5	T (1)	N/A	N/A
Argentina	1	T (1)	N/A	N/A
unknown	1	T (1)	N/A	N/A
Brazil	1	T (1)	N/A	N/A
Paraguay	1	T (1)	N/A	N/A

DNA-seq reads can be viewed by clicking on the *view DNA-seq reads* link from within the table.

	1	1		1		1		
Venezuela	JTORRES	EUSMPL0102- 1-7	С	G	С	75	100	view DNA- seq reads

This action will re-direct you to a JBrowse session where you can select even more isolate tracks by clicking on the Select Tracks tab on the left.

Genome	Tra	ck View	Help																	Cocci	dioide	es pos	adasi	i str. S	ilveira		🖘 Share
200	000	400,000	600,000	800,	000 1,000 000	1,200,000	1,400,00	0 1,6	00,000	1,8	00,000	2,00	0,000	2,20	0,000	2,4	00,000	2,0	600,00	0 2	,800,0	000	3,000	0,000	3,200	0,000	3,400,000
Select tracks					$ \bigcirc \bigcirc $	Qe	<u>(</u>	Ð.	GL636	486 🔻	GL63	86486:1	00565	5100	5755 (1	101 b)	Go	2]+							
	<u> </u>	elect Tr	acks					1,005	,700							1	,005,7	25					_			1,005	,750
Reference R	E E	My Tracks Currently A	ctive	•	Back to browser	Clear All Filters		I Y L F	G	E G V	× R	S C	V W	A G (c *	R E G	E	G R	E G	R	E R	N I	S F R	R E G	P A P	E R F	K R K
CCGTTG	A	Category		·	Name	 Category 	T	ATTT	GGG	GAG		GTG	GTG	GCT	GTG	AGG	AAA	GG	GAG	AGI	GA	AT	C C C	AGG	CCC	GAG	AAAG
T S G N	L v	10 Genetic Va Subcategory	riation		2566 Coverage and Alignments	Genetic Var	iation	K I Ç		T S I	Y L	H T	P	Q A S	S F H	S L P	F	P	S L	LS	SF	N N T	E R	AL	G	S L	F P
		10 DNA-Seq							- I	-		•	•			•	-	•			•	-		-		-	-
	Cov 🔹	67 Aligned ger reads - Coc 10 SNP calls or Coccidioide isolates fro	iome sequence cidioides isolates n WGS is posadasii m regions		34698 Coverage and Alignments	Genetic Var	iation																				
CT		bordering t Sea.	he Caribbean		3490 Coverage and Alignments	Genetic Var	iation										G		G		C				Â		
		10 Coverage (I	Read Alignments		Angrineries																						
		200med) 10 Coverage (p Normalized	oloidy)		3796 Coverage and	0														C							
	-	RNA-Seq Alig nr 10 (no data)	nent		Alignments	Genetic Var	ation																				
	•	RNA-Seq Stran 10 (no data)	d		4542 Coverage and	Constin Ver	istics			10000					c	C A T	CTT		. .	•			G				
					Alignments	Genetic Var	ation	G		0000							G										

- b) Determine genes that map to the SNPs identified in Step 1.
- Add Step and use Genomic Colocation search to combine the results in Step 1 with organism search in Step 2:

<	Add a step to your search strategy 🛛 🛛
Combine with other SNPs	Use the relative position of features on the genome between your existing step and the new step to identify features to keep in the final result.
Two Groups 17,824 MMV Step 1 Step 2	Choose which features to colocate. From A new search An existing strategy My basket
Use Genomic Colocation to combine with other features	Cares Genes Taxonomy Q. Organism
Two Groups 19,824 SNPs Step 1 Step 2	

 Next window will bring up an organism selection window, choose Silveira strain.

Note: You must select at least 1 values for this parameter. 1 selected, out of 163				
add these clear these select only these select all clear all				
silv	×			
- Fungi				
Ascomycota				
 Eurotiomycetes 				
 Onygenales 				
— Coccidioides				
Coccidioides posadasii				
Coccidioides posadasii str. Silveira				
add these clear these select only these select all clear all				

 Next, set up your colocation parameters and Choose to Return each Gene from the new Step whose exact region overlaps the exact region

whose exact region overlaps the exact region of a SNP in Step 1 and is on either strand

Organism

"Return each Gene from the new step v whose exact region	overlaps ~ the	exact region of a SNP from the current step and is on either strand
Region	II	Region SNP
Exact Upstream: 1000 bp		 Exact Upstream: 1000 bp
O Downstream: 1000 bp		O Downstream: 1000 bp
O Custom:		O Custom:
begin at: start V + V 0 bp		begin at: start V + V 0 bp
end at: stop \checkmark + \checkmark 0 bp		end at: stop \checkmark + \checkmark 0 bp

• Examine your results. How many gene were identified in your search?

How can you analyze this data further?

Hint: you can extract genes that have *hypothetical* in the product description via the *Text* search. You can also perform GO enrichment or identify orthologs in other species, or map to metabolic pathways etc., or you can use other resources as shown previously to cross reference the integrated data. In addition, you may also run a SNP search <u>within</u> a group of isolates to identify heterozygous or homozygous SNPs...

×

3. Identify SNPs that distinguish parasites with rapid clearance times following treatment with the anti-malarial drug Artesunate vs. those that have delayed clearance times. We have a published study in PlasmoDB (Takala-Harrison et. al.) with sufficient meta-data about the samples to ask this interesting question.

For this exercise use http://PlasmoDB.org

Navigate to the "Differences between two groups of isolates" search under "Search for SNPs (from Array).

- a. Unlike re-sequencing experiments that can identify any SNPs in the sequence, SNP-Chips have a pre-determined set of SNPs that are assayed and there are multiple different Chips on which these assays can be run. For this study, the authors used the NIH_10K Chip, an array with approximately 10,000 SNPs of which ~8000 can be assayed. Choose this in the Isolate assay type parameter.
- b. Once this is done, an interesting set of characteristics are seen in the parameters to choose isolates. In addition to geographic location, there are clinical parameters like Clearance Time, Parasitemia levels, etc. In this exercise we want to identify SNPs that distinguish parasites with rapid

clearance times from those with delayed clearance times but you could try other

Identify SNPs (from Array) based on Differences Between Two Groups of Isolates possibilities once you are finished. In Set A Isolates, click on some of the characteristics to explore the data. Then choose Clearance Time and select 0 – 38 or 39 minutes. Do these rapid clearance samples appear to be evenly

Country

Chec	k items below to	o apply	this fil	lter	331	(>99%) of 332 Se	et A Isolates have data	for this variable
	냐 Country	¢	Rem Is 109	aining Set A colates ?	\$	ls 331	Set A olates ?	Distribution 😧	% 😧
	Bangladesh		85	(78%)		101	(31%)		(84%)
	Cambodia		15	(14%)		200	(60%)		(8%)
	Thailand		9	(8%)		30	(9%)	10 A A A A A A A A A A A A A A A A A A A	(30%)
	LE Country Bangladesh Cambodia Thailand	*	ls 109 85 15 9	(100%) (78%) (14%) (8%)	*	ls 331 101 200 30	olates ? (100%) (31%) (60%) (9%)	Distribution ?	(84%) (30%

distributed geographically? *Hint: click on Geographic Location to view the distribution of these selected samples (pink section of histogram).*

- c. We'll keep the defaults of 80 for both Major Allele Frequency and Percent Isolates with Call for this exercise.
- d. Now select Clearance times of 82 end for Set B Isolates. Are these isolates geographically biased?

e. Keep defaults for Major Allele and Percent with call and run the search. How many SNPs did you find?

A gene (Kelch13) has been identified that is involved in Artemesinin resistance in South East Asia. Is one or more of your SNPs in the region (+/- 10 KB) of the kelch13 gene? Note that we are not expecting that the SNP would be within the gene as this is a Chip experiment where the SNPs were pre-determined and there may not be a SNP on the array within a particular gene that we care about. However, if there is a haplotype that is being selected for in the presence of artemesinin, any SNPs within that haplotype (region of the genome) should likewise be selected.

Hint: add a step to search for genes by text and search for kelch13. This will require you to use the genomic co-location operation as outlined in exercise 3. Set it up the same way except choose custom and start – 10000, stop + 10000 to define the region.

4. Using resequencing data to identify regions of copy number variation (CNV) For this exercise use <u>https://toxodb.org</u>

In addition to being useful for variant calling, high throughput sequencing data can be used for determining regions of copy number variation (CNV). All reads in ToxoDB are mapped to the same reference strain ME49, as a result we can estimate a gene's copy number in each of the aligned strains.

The goal of this exercise is to identify

Gene searches taking advantage of sequence alignment data can be found under the

under the "Genetic Variation" category. Two available searches that define regions of CNV are: **Copy number:** This search returns genes that are present at copy numbers (haploid number or gene dose) within a range that you specify.

Copy number comparison: This search compares the estimated copy number of a gene in the re-sequenced strain with the copy number in the reference annotation. The copy number in the reference annotation is calculated as the number of genes that are in the same ortholog group as the gene of interest. We infer that these genes have arisen as a result of tandem duplication of a common ancestor.

You have the choice between two different metrics for defining copy number: *haploid number or gene dose*. Haploid number is the number of genes on an individual chromosome. Gene dose is the total number of genes in an organism, accounting for copy number of the chromosome. For example, a single-copy gene in a diploid organism has a haploid number of 1 and a gene dose of 2. You can choose to search for genes where at least one of your selected isolates meets your cutoff criteria for the

chosen metric (By Strain/Sample), or where the median of the chosen metric across all the selected isolates meets the cutoff (Median of Selected Strains/Samples)

Begin by choosing an Organism (reference genome) and one or more re-sequenced isolates. Choose whether you want to apply your search criteria to individual samples or to the median of your chosen samples. Then choose your Metric, Operator and Copy Number, and initiate the search by clicking the GET ANSWER button. Genes returned by the search will have a copy number based on your chosen metric within the range that you specified. For example, searching with the haploid number equal to 4 will return genes with 4 copies on a chromosome.

a. Use the copy number search to identify genes that are present at a copy number great than 5. Set up the copy number search to include all available isolates/strains, select the median of selected strains/samples, use Gene Dose for copy number metric and set the copy number to 5.

Organism						
Toxoplasma gondii ME49						
Strain/Sample						
64 Strain/Sample Total	64 o	f 64 Strain/Sample selected	data set ×			
expand all collapse all						
Find a variable Q	data	set				
Ltd. Collection year	() K	eep checked values at top		64 (100	%) of 64 Strain/Sample h	ave data for this variable
i≣ data set		🛓 data set	Remaining	Strain/Sam., ??	Distribution	* 🖸
Sample source	- -		64 (100%)	64 (100%)		~ •
▶ Sample		Aligned genomic sequence reads	1 (2%)	1 (2%)	1	(100%)
Organism under investigation		Aligned genomic sequence reads	62 (97%)	62 (97%)		(100%)
DNA sequencing		- White Paper Strains				
		loxopiasma gondii strain C2 clone H3 aligned genome sequence	1 (2%)	1 (2%)	1	(100%)
/ledian Or By Strain/Sample?						
Median of Selected Strains/Samples		0				
Median of Selected Strains/Samples		0				
Median of Selected Strains/Samples Copy Number Metric Gene dose		Ð				
Median of Selected Strains/Samples Copy Number Metric Gene dose Copy Depretor						
Median of Selected Strains/Samples Copy Number Metric Gene dose C Deperator Greater than or equal to C						
Median of Selected Strains/Samples Copy Number Metric Gene dose C Dperator Greater than or equal to C Sopy Number		B				

Identify Genes based on Copy Number (CNV)

How many genes did you get? Are any of these genes clustered in the same location? (*hint*: click on the "Genome view" tab and examine the red and blue lines in the gene location column – wider lines indicate more than one gene in that location, click on the

Unnamed Searc	h Strategy * 🥜				
CopyNumber 164 Genes Step 1	+ Add a step				Ĉ 2 2 < ŝ ×
<u> </u>					-/
164 Genes (50 c	rtholog groups)	Revise this search			
Gene Results Geno	me View Analyze R	esults			
Genes on forwa	vd strand:				
Genes on revers	sed strand;				
		4 1000			Show empty chromosomes
	<u> </u>	14 rows			
					Rows per page: 20
Sequence	Organism	Chromosome	↓ ₹ #Genes	🗘 Length 😮	Gene Locations
TGME49_chrVI	Toxoplasma gondii ME49	VI	32	3656745	
TGME49_chrXII	Toxoplasma gondii ME49	XII	24	7094428	
TGME49_chrX	Toxoplasma gondii ME49	x	20	7486190	m · · · · · · · · · · · · · · · · · · ·
TGME49_chrIX	Toxoplasma gondii ME49	IX	17	6327655	
TGME49_chrV	Toxoplasma gondii ME49	v	16	3331915	1 1 1

line to view what is there).

What happens if you edit this step and change the "Median Or By Strain/Sample" parameter to "By Strain/Sample (at least one selected strain/sample meets criteria)"? Do you get more or less genes? Which genes have the highest CNV? (*hint*: sort the median gene dose column from highest to lowest). Is this what you expected? Does the coverage of reads from resequenced strains aligned to the reference support this conclusion? Here is a link to a JBrowse view with some of the resequenced strain coverage data turned on: https://tinyurl.com/2yweuthr

Additional optional exedrcises

5. Find SNPs that distinguish *Toxoplasma gondii* strains isolated from chickens as compared to those isolated from cats. *NOTE: This exercise in ToxoDB explores the hypothesis that we can identify SNPs/genes involved in T. gondii host preference.*

Navigate to "Identify SNPs based on Differences Between Two Groups of Isolates".

b. Click select set A isolates and select hosts from the left column. Check the chicken (*Gallus gallus*) box to select the 11 chicken isolates.

et A Isolates								
65 Set A Isolates Total	11 o	f 65 Set A Isolates selected	Host or	ganism ×				
expand all collapse all								
Find a variable Q	Host	t organism						
Lill Collection year	◯ K	eep checked values at top		59 ((91%) of 65 Se	t A Isolate	s have data for th	is variabl
i≣ Country i≣ data set ▼ Sample source	•	L는 Host organism	Rem ÷ Is	naining Set A solates 🕜	÷ Is	Set A olates 😮	Distribution 🕜	% 🕜
I Host organism		Find items Q	59	(100%)	59	(100%)		
		Canis lupus familiaris	1	(2%)	1	(2%)	1	(100%)
Host common name		Capra hircus	1	(2%)	1	(2%)	1	(100%)
Sample		Felis catus	12	(20%)	12	(20%)		(100%)
Organism under investigation	·	Gallus gallus	11	(19%)	11	(19%)		(100%)
DNA sequencing		Homo sapiens	22	(37%)	22	(37%)		(100%)
		Ovis aries	4	(7%)	4	(7%)	1.0	(100%)
		Panthera onca	1	(2%)	1	(2%)	1	(100%)
		Panthera tigris altaica	1	(2%)	1	(2%)		(100%)
		Puma concolor couguar	1	(2%)	1	(2%)	1	(100%)
		Ramphastidae	1	(2%)	1	(2%)	1	(100%)
		Sus scrofa	2	(3%)	2	(3%)	1	(100%)

- **c.** Click select set B isolates and select hosts from the left column. Check the cat (*Felis catus*) box to select the 12 cat isolates.
- **d.** Let's run a very stringent search and change the "major allele frequency" parameters for both sets to 90. (*What does that mean?*). Also, set the isolates with base call parameter to 100 for both sets A and B.
 - How many SNPs did your search return?
 Does this large number that distinguish

Set B read frequency threshold >=
80% 🗘
Set B major allele frequency >=
90
O Set B percent isolates with base call >=
100

these two fairly large groups of isolates surprise you?

You want to identify genes that could potentially be involved in host preference in *Toxoplasma gondii* and you expect that the SNPs from this search you just ran may be in protein coding regions of genes involved in this preference. How might you identify genes containing these SNPs?

e. Add a step to identify protein-coding genes in Toxoplasma gondii ME49. Select the "Use Genomic Colocation..." option. Then select the gene search called "Gene Model Characteristics".

← A	dd a step to your search	strategy 👩		ж
Combine with other SNPs	Use the relative position of featur features to keep in the final result	es on the genome between you	r existing step	and the new step to iden
	Choose which features to coloca	te. From		
Two Groups 1,358 SNPs Step 1 Step 2	• A new search	 An existing strate 	ду	O My basket
Use Genomic Colocation to	Í	expand all collapse all	۲ 🕄	
combine with other reatures		 Genes Annotation, curation and identified Epigenomics 	ers	
Two Groups 7,358 SNPs		Function prediction Gene models Gene Model Characteristics		
Step 1 Step 2		Genetic variation Genomic Location Immunology		
		 Orthology and synteny Pathways and interactions 		
		 Phenotype Protein features and properties 		
		 Protein reactives and properties Protein targeting and localization 	ı.	
		 Proteomics Sequence analysis 		

f. Configure the gene model characteristics search to find protein coding genes

Add a step to your search strategy o

anscripts ᅌ								
ne Model Characteristi 255,437 Genes/Transcripts Total	CS 249,	971 of 255,4	37 Genes/Ti	ranscripts	selected	Gene Type 3	×	
expand all collapse all Find a variable Q	Gen Selec	e Type t gene type						
i≣ Organism		5 71						
i≣ Gene Type) K	eep checked	values at top	255,437	' (100%) of 25	5,437 Ger	nes/Transcripts have dat	a for this varia
I≣ Gene Type I≣ Transcript Type I≡ Pseudogene		eep checked Gene L트 Type	values at top	255,437 aining 'Tran ?	(100%) of 25	5,437 Ger Tran 🝞	nes/Transcripts have dat	a for this varia
I≣ Gene Type I≣ Transcript Type I≣ Pseudogene		eep checked Gene Lie Type	values at top Rem Genes/ 255,437	255,437 taining Tran ? (100%)	(100%) of 25 Genes/ 255,437	5,437 Ger Tran ?	Distribution 🖓	a for this varia
III Gene Type III Transcript Type III Pseudogene Mat Transcript Count Mat Gene Exon Count		eep checked Li≞ Gene Type Protein coding	values at top	255,437 taining (Tran ? (100%) (98%)	 (100%) of 25 Genes/ 255,437 249,971 	5,437 Ger Tran ? (100%) (98%)	nes/Transcripts have dat	a for this varia % (1003
E Gene Type III Transcript Type III Pseudogene 네네 Transcript Count 네네 Gene Exon Count 네네 Transcript Exon Count		eep checked v J≞ Gene Type protein coding rRNA encoding	values at top Rem 255,437 249,971 578	255,437 Tran ? (100%) (98%) (< 1%)	¢ (100%) of 25	5,437 Ger Tran ? (100%) (98%) (< 1%)	nes/Transcripts have dat	a for this varia % (1003 (1009
E Gene Type Transcript Type Pseudogene M. Transcript Count M. Gene Exon Count M. Transcript Exon Count	 ✓ K ✓ ✓ 	eep checked v I E Gene Type protein coding rRNA encoding snoRNA encoding	values at top	255,437 maining (100%) (98%) (< 1%) (< 1%)	(100%) of 25 Genes/ 255,437 249,971 578 2	5,437 Ger Tran ? (100%) (98%) (< 1%) (< 1%)	Distribution 🚱	a for this varia % (100% (100%) (100%)
IIII Gene Type IIII Transcript Type IIII Pseudogene Iail Transcript Count Iail Gene Exon Count Iail Transcript Exon Count		eep checked v Lis Gene Type protein coding rRNA encoding snoRNA encoding snRNA	values at top Rem Genes/ 255,437 249,971 578 2 18	255,437 tran ? (100%) (98%) (< 1%) (< 1%) (< 1%)	r (100%) of 25 Genes/ 255,437 249,971 578 2 18	5,437 Ger Tran 2 (100%) (98%) (<1%) (<1%) (<1%)	Distribution ?	a for this varia

only.

g. Configure the genome colocation page to return "Gene from Step 2 whose exact region overlaps the exact region of a SNP in Step 1 and is on either

← Add a ste	ep to your search strategy o
*Return each Gene from the new step 😨 whose exact region Region Gene Exact Uppstream: 1000 bp Downstream: 1000 bp Custom: begin at: start 2 + 2 0 bp end at: stop 2 + 2 0 bp	overlaps © the I Region * SNP • Exact Upstream: 1000 bp Custom: begin at: start • # \$0 bp end at: stop \$
	Run Step

strand"

- How many genes are returned?
- What is the gene that contains the most SNPs on your list? *Hint: sort the list high to low by match count.*
- Does this gene have orthologs in other species from ToxoDB? *Hint:* go to the gene page and look at the genomic context and orthologs/paralogs in ToxoDB table.
- Does it have orthology in any other species? *Hint: click on the link under the orthologs table and look at in OrthoMCL.*
- What does this say about this gene? How can you follow up on what role this gene may be playing for the organism? *Hint: you are a biologist and will need to look at the data on the gene record page and interpret it based on your experience and intuition.*
- Do these genes appear to be randomly distributed along the genome? *Hint: click the "Genome View" tab to view the distribution.* If you are a *Toxoplasma* biologist, do you have any hypotheses why the distribution may be skewed?

As a last resort: <u>https://toxodb.org/toxo/im.do?s=4fe2f7409d4ba4d6</u>

6. Identifying SNPs within a group of isolates For this exercise use <u>https://tritrypdb.org</u>

a. Go to the "Differences Within a Group of Isolates" search.

Hint: you can find this under the "SNPs" category (remember you can filter the searches by typing a key word like "snps" in the filter box.

Search for	Identify SNPs based on Differences Within a Group of Isolates
snps 🗶 0	Organism Leistmaria donovari BPX282A1
Genes	The organism you choose will determine the genome to which the SNPs have been mapped. That will also restrict the set of isolates you may choose as SNPs are identified by aligning the reads from those isolates to this genome.
Genetic variation	Samples
SNPs	252 Samples Total 208 of 252 Samples selected Host organism ×
Q Differences Between Two Groups of Isolates	Find a variable Find a variable
Q Differences Within a Group of Isolates	Geographic location
Q Gene IDs	Ill Host organism Ill Homo sapiens 208 (1001) 208 (1001) (1001)
୍ର Genomic Location ୍ର SNP ID(s)	Keath state Treatment outcome First common name

b. What does this search do? Choose *Leishmania donovani* for the organism and select isolates from the human host. Use default parameters for the rest of the parameters.

Run the query and look at your results.

- How many SNPs were returned?
- Are any of these heterozygous SNPs?
- How would you identify heterozygous SNPs? Add a step to your strategy to identify SNPs from these isolates that may be heterozygous. *Hint: choose a read*

40% C	cy threshol	d		
Minor allele f	requency >	-		
Percent isola	tes with a b	ase call >	=	
20				

Run Step

frequency threshold of 40% and select the 2 minus 1 operation.

- How many SNPs did you identify?

- Click on the second step results to view them. What do you notice about the %minor alleles? (many are quite low ... i.e. in one or two of the isolates). How can you remove these from your search results? Hint: revise this search and increase the minor allele frequency threshold (try 20 and 40 and compare results).
- Why might you want to increase the minor allele threshold when you run SNP searches?
- Try increasing / decreasing the "Percent isolates with base call". How does this impact your results? Why might you want to change this parameter?

1010		
linor allele fr	equency >=	
60		
ercent isolati	es with a base call >=	
20		

 Go to a record page for a SNP with a high minor allele frequency. What do you see in the Strains table? Why are many of the strains repeated?

7. Identify SNPs within a group of isolates

- Deploy the SNP search called "Differences Within a Group of Isolates"
- Look for homozygous SNPs in Batrachochytrium dendrobatidis WGS (Hammersmith). For example, here is one way to set your search:

Details for step One Group 🖋 74355 SNPs	
Organism	Batrachochytrium dendrobatidis JEL423
Samples	data set: SNP calls on Batrachochytrium dendrobatidis WGS (Hammersmith), SNP calls on Batrachochytrium dendrobatidis WGS (BGI)
Read frequency threshold	80%
Minor allele frequency >=	0
Percent isolates with a base call >=	100

Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis in amphibians. Next combine your search of homozygous mutation that arose across all isolates in this study to map SNPs to *Bd* genes (Step 2; Hint: colocation tool), identify genes that carry non-synonymous mutations (Step 3; Hint: requires SNP Characteristics search), and look for ABC-transporters (Step 4; Hint: Requires InterPro Domain search; this example uses PF00005)

Note: To identify heterozygous SNPs, set the read frequency threshold parameter to 40% and increase the minor allele frequency threshold (try 20 or 40).

Read frequency threshold applies to the sequencing reads of individual isolates and defines a stringency for data supporting a SNP call between an isolate and the reference genome (Organism). Each nucleotide position of each isolate is compared to the reference genome and a SNP call is made if the portion of the isolate's aligned reads that support the SNP is above the Read Frequency Threshold (RFT). Find high quality haploid SNPs with 80% RFT or heterozygous diploid/aneuploid SNPs with 40%.

Minor Allele Frequency parameter applies to your group of isolates. A SNP can occur in any number of isolates in your group and the least frequent SNP call across all isolates is the Minor Allele Frequency. A SNP will be returned by the search if the frequency of the minor allele is equal to or greater than your Minor Allele Frequency.

8. Use resequencing data to identify regions of copy number variation (CNV) In addition to being useful for variant calling, high throughput sequencing data can be used for determining regions of copy number variation (CNV). All reads in FungiDB are mapped to the same reference strain as SNP datasets and, as a result, we can estimate a gene's copy number in each of the aligned strains.

One of the datasets we have loaded is isolates from *Candida albicans* clinical isolates described in this paper: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383195/</u> The data on aneuploidy is shown in figure 4: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383195/figure/fig4/</u>

a. Find trisomic chromosomes.

 Use the Genomic Sequences by Copy Number/Ploidy search, select Candida albicans, and choose the dataset titled "Aligned genome sequence reads – Candida albicans clinical isolates".

Copy Number/Ploidy: Find genomic sequences or chromosomes based on their estimated copy number in resequenced strains. Genomic sequences returned by the search will have either have a median estimated copy number greater than or equal to the value you entered for the Copy Number across the selected strains/samples, or will have an estimated copy number greater than or equal to the value you entered for the Copy Number across the selected strains, samples, or will have an estimated copy number greater than or equal to the value you entered for the Copy Number in at least one of the selected strains, samples. For example, to find supernumerary chromosomes in a diploid organism, search for genomic sequences where the Copy Number is >= 3.

Genes						
Genetic variation						
(CNV) Genomic Sequences	Identify Genomic Sequences based on Copy Number/Ploidy					
Copy Number/Ploidy →	68 Strain/Sample Total expand all collapse al Find a variable	42 of 68 Strain/Sample selected data set × data set ③ Keep checked values at top 68 (100%) of 68 Strain/Sample have data for this vari				
	Collection year Sample type data set Geographic location Sample source	It data set Bernalding Strain/Sam_ Strain/Sam_ Distribution Strain/Sam_ Distribution Z Aligned genome sequence reads constitiat ablema clinical totates 42 (eza) 42 (eza) (constitiation) (constitiation)				
	Organism under investigation DNA sequencing	Aligned genome sequence reads - 6 (%) 6 (%) (100 Candid aligned genome sequence of resistance to ampheteria B SNP calls of 2 transfer alibicans 20 (2%) 20 (2%) (100 Clinical isolates				

• Set search criteria:

V	Copy Number >=
	3
0	Median Or By Strain/Sample?
	By Strain/Sample (at least one selected strain/sample meets criteria) 🗙

The search by strain/sample (i.e., at one or more of the selected strains has to match the criteria rather than the median of the selected strains matching) is intended to find chromosomes where the whole chromosome is duplicated. It may find chromosomes where partial aneuploidy involves most of the chromosome but is unlikely to find chromosomes where partial aneuploidy only covers a small region. Also, because this search currently relies on coverage alone, it will not find instances of global genome duplication (e.g. all chromosomes became triploid).

Plody 4 Sequences Step 1						
4 Genom	ic Sequences Revise this se	arch				
Genomic S	equence Results					
Ro	ws per page: 1000 🗸		Lownload	Add to Basket 🌣 Add Co	lumns	
	Sequence ID	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	\$trains/Samples Meeting Criteria ? Strains/Samples Meeting Criteria	Median Copy No (Samples Meeting Criteria)	0 💼	
-	Ca22chr3A_C_albicans_SC5314	2	Candida_albicans_TWTC6	3		
-	Ca22chr4A_C_albicans_SC5314	2	$eq:candida_albicans_1649, Candida_albicans_2501, Candida_albicans_3731, Candida_albicans_5106$	3		
-	Ca22chr5A_C_albicans_SC5314	2	Candida_albicans_1619, Candida_albicans_1649, Candida_albicans_2823, Candida_albicans_3034, Candi	3		
-	Ca22chr6A_C_albicans_SC5314	2	Candida_albicans_TWTC8	3		

b. Explore segmental aneuploidy in JBrowse

In JBrowse we have two coverage tracks:

- Raw coverage from the alignment (available for every isolate where we have whole genome sequencing, whether we ran the copy number pipeline or not)
- Normalised coverage in bins (only available for isolates where we have run the copy number pipeline)

Note: You can download the results as a .tsv file and then open it in Excel to view all results (Hint: Click on the Download button located above the results table and select the first export option from the top)

A	В	c	D
Sequence ID	Median Copy No (All Selected Samples)	Strains/Samples Meeting Criteria	Median Copy No (Samples Meeting Criteria)
Ca22chr3A_C_albicans_SC5314	2	Candida_albicans_TWTC6	3
Ca22chr4A_C_albicans_SC5314	2	Candida_albicans_1649, Candida_albicans_2501, Candida_albicans_3731, Candida_albicans_5106	3
Ca22chr5A_C_albicans_SC5314	2	Candida_albicans_1619, Candida_albicans_1649, Candida_albicans_2823, Candida_albicans_3034, Candida_albicans_3107, Candida_albicans_3184, Candida_albicans_3281, Candida_albicans_3731, Candida_albicans_3733	3
Ca22chr6A_C_albicans_SC5314	2	Candida_albicans_TWTC8	3

- Click on one of the Sequence ID Ca22chr5A_C_albicans_SC5314 (in blue) and then click on the View in JBrowse genome browser button.
- When in JBrowse, click on the Select tracks tab to customize your view:
- Select tracks for isolates 1649, 5106, and 3120

Candida_albicans_1649 Coverage and Alignments (coverage depth)
- 300
200
Candida_albicans_1649 Coverage normalised to chromosome copy number (ploidy)
Candida albicant 5106 Coverage and Alignments (coverage depth)
- 400
300
Constant - Marine 1000 Farmer and Mind An American and An (2012)
© Candida_albicans_3120 Coverage and Alignments (coverage depth)
300
Candida_albicans_3120 Coverage normalised to chromosome copy number (ploidy)
Secommunity chat

Notice examples of chromosomal (1649) and segmental triploidy (5106,3120). Note that the whole chromosome is shown in both screenshots, and both tracks are shown for each sample. We are not currently normalizing for telomere proximity.

• Switch the JBrowse view to the chromosome 2

• Notice segmental aneuploidy in the chromosome 2 right arm.

Note: you may need to zoom out and/or adjust settings in the Change Score range track option

D' L L									
Pin to top		Set track score rar	ige		×				
Edit config		Manual Min score	re 0 Max	score 6					
X Delete track		Global							
Save track data		Clipped global			and a start of				
Change height	er (pla	O cubber Proper							
Change score range			OK Cancel						
Log scale									
No fill									
Genome Track View Help							Cand	ida albicans SC5314	Go Share
0 200,000 400,000	600,0	800,000	1,000,000	1,200,000	1,400,000	1,600,000	1,800,000	2,000,000	2,200,0
tracks 250,000 500	<u>) Q</u>	Q Q Q Ca2	2chr2A_C_albicans_SC531 1.000.000	4 ▼ Ca22chr2A_C 1.250.000	_albicans_SC5314:1	2231883 (2.23 Mb)	Go 🍛	2,000,000	22
Candida_albicans_1649 Coverage and Alignme 400	ints (coverage)	der 638,781		.,200,000				210001000	
300									
100	ير التل من رح من		and the state of the second						ومحيطا مسي
Candida albicans 1649 Coverage normalised	to chromoson	ne copy number (ploidy)							
-5									
			مريح مريد المارية والمريح مريدة		an tu la lateratura da	destanda bi supporte a bi	مريانية ومراجع والمراجع	na da bita amilia katak san dalam	فالالديار وأوا ومعاريا
					1			he en e e h	
	ents (coverage	depth)							
Candida_albicans_5106 Coverage and Alignme									
Candida_albicans_5106 Coverage and Alignme 400 300									
Candida_albicans_5106 Coverage and Alignme 400 - 300 - 200 100						1			مسي المنصل
Candida_albicans_5106 Coverage and Alignme 400 300 - 200 - 20									
Candida_albicans_5106 Coverage and Alignme 400 200 200 200 200 200 200 200 200 200	to chromosom	ne copy number (ploidy)						, utolo too I	
Candida_albicans_5106 Coverage and Alignme 400 - 200 - 20 - 2	to chromoson	ne copy number (ploidy)				<u> </u>			المست المتنظر الفنسي المتنفق

Using Gene Searches

Looking through JBrowse is fine if you know what you are looking for, but it can be difficult for data mining. One way to discover regions of potential segmental aneuploidy is to use the searches for genes by copy number.

We have two searches: Gene searches taking advantage of sequence alignment data can be found under the under the "Genetic Variation" category. Two available searches that define regions of CNV are:

- **Copy number:** This search returns genes that are present at copy numbers (haploid number or gene dose) within a range that you specify.

Copy number comparison: This search compares the estimated copy number of a gene in the re-sequenced strain with the copy number in the reference annotation. The copy number in the reference annotation is calculated as the number of genes that are in the same ortholog group as the gene of interest. We

infer that these genes have arisen as a result of tandem duplication of a common ancestor.

You have the choice between two different metrics for defining copy number: haploid number or gene dose:

- Haploid number is the number of genes on an individual chromosome.
- **Gene dose** is the total number of genes in an organism, accounting for copy number of the chromosome.

For example, a single-copy gene in a diploid organism has a haploid number of 1 and a gene dose of 2. You can choose to search for genes where at least one of your selected isolates meets your cutoff criteria for the chosen metric (By Strain/Sample), or where the median of the chosen metric across all the selected isolates meets the cutoff (Median of Selected Strains/Samples)

• To discover regions of potential segmental aneuploidy, use the *Genes by Copy Number Comparison* search to look for genes where the predicted haploid number is *greater than the number of copies in the reference annotation*. For clarity, restrict your search to isolate 5106.

68 Strain/Sample Total	1 of 68 Strain/Sample selected
expand all collapse all	
Find a variable Q	Fungal strain
I Country ■ Collection year	Keep checked values at top
i≣ Sample type i≣ data set	Fungal strain
Geographic location Sample source	Candida albicans 5106
I≣ Passage history	
 Host common name Organism under investigation 	
I Fungal strain	
CopyNumberComparison 521 Genes Step 1	+ Add a step

Note: Choosing Median or By Strain/Sample will only make a difference if you have multiple strains.

• You can export the list of genes and also visualize them in the Genome View, which highlights the locations of hits:

Gene Results Genome View	Analyze Results				
Genes on forward strand; Genes on reversed strand;					
	8 rows				☐ Show empty chromosomes
					Rows per page: 20 V
Sequence	Organism	Chromosome	↓ F #Genes	🗢 Length 🕜	Gene Locations
Ca22chr2A_C_albicans_SC5314	Candida albicans SC5314	2A	153	2231883	
Ca22chr5A_C_albicans_SC5314	Candida albicans SC5314	5A	108	1190869	
Ca22chr1A_C_albicans_SC5314	Candida albicans SC5314	1A	58	3188341	
Ca22chrRA_C_albicans_SC5314	Candida albicans SC5314	RA	54	2286237	
Ca22chr3A_C_albicans_SC5314	Candida albicans SC5314	3A	52	1799298	
Ca22chr4A_C_albicans_SC5314	Candida albicans SC5314	4A	50	1603259	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ca22chr6A_C_albicans_SC5314	Candida albicans SC5314	6A	24	1033292	
Ca22chr7A_C_albicans_SC5314	Candida albicans	7A	22	949580	

As you can see in the highlighted regions, large numbers of genes that are predicted to have increased copy numbers are clustered at the right-hand end of chromosome 2 and the left-hand end of chromosome 5, corresponding to the segmental aneuploidies shown in the JBrowse session above.

Appendix

Isolates are assayed for SNPs in VEuPathDB by two basic methods: re-sequencing and the alignment of sequence reads to a reference genome or DNA hybridization to a SNP-chip array.

Read Frequency Threshold: Calling SNPs for each isolate in your group. Each isolate's sequencing reads are aligned to a reference genome (Organism) and then each nucleotide position with 5 or more aligned reads is examined. A base call is made if the aligned reads meet your Read Frequency Threshold. For example, Isolate X has 10 aligned reads at nucleotide position 1600. If 6 reads are G and 4 reads are A, the read frequency is 60% for the G call and 40% for A. Running this search with the Read Frequency Threshold set to 80% will prevent a base call and consequently exclude Isolate X when returning SNPs for nucleotide position 1600. Running the search with the Read Frequency Threshold set to 60% will bring back a G for this isolate and a 40% threshold will return two calls (both G and A) at this position. The parameter lets you control the quality of the sequencing data and the confidence of the SNP calls. Read Frequency Threshold is a particularly important parameter when dealing with diploid (or aneuploid) organisms since a read frequency of ~50% is expected for heterozygous SNPs.

Isolate X aligned sequencing reads

Minor allele frequency: Parameter for calling SNPs across your isolate group. The minor allele frequency refers to the least common base call for a single nucleotide position across all isolates. The default setting for this parameter is 0% and returns all SNPs - instances where at least one isolate has a base call that differs from reference. Increase the Minor allele frequency to ensure that SNPs returned by the search are shared by a larger percentage of isolates in your group.

reference IGGIGATACT GGITTITIGTA CICCACITCI CGGIGCITCA ITITCIACIG 303.1 IGGIGATACT GGITTITIGIA CICCACIICI CGGIGCIIIA IIICIACIG TGATAATNCT GGTTTTTGTA CTCCACTTCC CAGTGCTTCA TTTTCTACTG 309.1 RV_3600 RV_3606 TGGTGATACT GGTTTTTGTA CTCCACTTCT CGGTGCTTCA TTTTCTACTG TGATAATNCT GGTTTTTGTA CTCCACTTCC CAGTGCTTCA TTTTCTACTG RV 3610 TGATGATTCT GGTTTTTGTA CTCCACTTCC CAGTGCTTCA TTTTCTACTG TGGTGATACT GGTTTTTGTA CTCCACTTCT CGGTGCTTCA TTTTCTACTG SenT119.09 SenT123.09 TGATRATICT GGTTTTTGTA CTCCACTTCC CAGTGCTTCA TTTTCTACTG TGGTGATACT GGTTTTTGTA CTCCACTTCC CGGTGCTTCA TTTTCTACTG SenT140.08 SenT142.09 TGGTGATACT GGTTTTTGTA CTCCACTTCC CAGTGCTTCA TTTTCTACTG SenT175.08 TGGTGATACT GGTTTTTGTA CTCCACTTCT CGGTGCTTTA TTTTCTACTG Reference = G Reference = A Reference = G 6 isolate seg = G 6 isolate seg = A 5 isolate seg = G 4 isolate seg = A 2 isolate seg = T 5 isolate seg = A % with base call = 100 2 isolate seg = N (no call) % with base call = 100 Minor allele = A % with base call = 80 Minor allele = G or A Minor allele freg = 40% (4/10) Minor allele = T Minor allele freg = 50% (5/10) Minor allele freg = 25% (2/8)

Isolate consensus sequences aligned to reference genome.

Percent isolates with a base call: Parameter for calling SNPs across your isolate group

Sometimes an isolate does not have a base call at a certain nucleotide position because the Read Frequency Threshold was not met or because there were less than 5 aligned sequencing reads for that nucleotide position. In this case, a SNP can be returned by the search based on a subset of your isolate group. The 'Percent isolates with a base call' parameter defines the fraction of isolates that must have a base call before a SNP is returned for that nucleotide position. The default setting for this parameter is 80% or 8 out of 10 isolates in your group must have a base call for a SNP to be returned by the search. The higher this parameter, the more likely the SNP is to be high quality as regions difficult to align or difficult to sequence will tend to have a lower percentage of calls since the coverage and/or quality will be lower in that region.