Phenotypic data

Learning objectives:

- Explore how to combine different phenotypic data
- Explore high throughput mutagenesis data
- Explore curated phenotypic data
- Explore high throughput subcellular localization data
- 1. Identify genes that are targeted to the ciliary tip of *Trypanosoma brucei* that are also essential for parasite fitness.

Note for this exercise use http://tritrypdb.org

- a. TriTrypDB integrates data from the TrypTag project (<u>http://tryptag.org</u>). Genes from *T. brucei* were N- and C-terminally tagged with a fluorescent protein and subcellular localization determined by microscopy. The description of the localization was done using gene ontology terms.
- Start by finding the "Cellular Localization Imaging" search.

	2 Reset values
Search for	Organism
	Trypanosoma brucei Drucei TREU927 🔋
Genes	N-terminal
Protein targeting and localization	• C-terminal
Q Cellular Localization Imaging	
	O GO Term or GO ID
	G0.0097542: ciliary tip: 3 X

Identify Genes based on Cellular Localization Imaging

- Configure the search to identify the GO term "Ciliary Tip" notice that when you start typing the autocomplete function offers you selectable options.
- Since the experiment examined both N and C terimnal fusions proteins, you will have to run the search twice and combine the results from both searches. Did you use a union or an intersect to combine the results?

- Explore the results you got. Scroll down to the results section, then scroll to the right of the results window to reveal the subcellular localization

Gene Results Gen	nome View	Analyze Results							
1	2	Rows per page:	50 😋		🛓 Download	dd to Basket	Add Columns		
Product Description	0 📊	# Transcripts	EC nur	mbers 🛛 🕄 📊	🔶 Cellular localization images	00			
ain-like protein 1.1	1	1	3.4 ent 3.4	4.22.17 (Transferred try: 3.4.22.52 and 4.22.53)			*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 2
N repeat, putative	e	1	N/J	A	9, [~] ,		\sim		
thetical protein, erved		1	N/J	A			्र	1 ,	215
thetical protein, erved		1	N/J	A				. 2	Ur i
:0-like serine/thre in kinase, putative	eonine- re	1	N/)	A				0 c	05
thetical protein.					5 2 4 3 3	23			

images. These are very small, but you can right click on them to open a larger image in a new window.

b. Add a step to identify how many genes are essential for the fitness of the parasite. Click on Add step, then search for the phenotype searches. Click on the Phenotype Evidence option.

Combine with other Genes	Choose <i>how</i> to combine with other Genes
GO CL 46 Genes	• (1) 2 INTERSECT 3 (1) 2 UNION 3 (1) 2 MINUS 3 (1) 3 MINUS 2
Step 2 Step 3	Ochoose which Genes to combine. From
	• A new search An existing strategy My basket
Transform into related records	
GO CL 48 Genes	(phen *) Ø
Step 2 Step 3	Phenotype Q Phenotype Evidence

- Select the "High-throughput phenotyping using RNAi target sequencing (David Horn)".

 Configure the search to return genes that are decreased in coverage by 1.5 fold when comparing the maximum expression value of all induced samples to the uninduced sample.

How many genes did you get?

- 2. Finding genes based on high throughput mutagenesis and fitness analysis. Note for this exercise use http://toxodb.org
 - Navigate to the CRISPR phenotype search. Note that this search form is quite simple just requiring a range of fitness values. The defaults return all genes not limiting the search at all. This is only useful in as much as it

tells you which genes were assayed which is nearly the entire genome. The tricky bit is deciding where to make the cutoffs. Again, the description on the search form is very helpful in this regard

(as is the link to the paper ... remember these phenotypes were assayed under specific conditions so just because a particular gene doesn't show a phenotype doesn't mean it wouldn't in other conditions (or infecting an actual host). The plot showing the phenotype score (fitness) is particularly useful. Red points along the plot are genes known to be essential under these conditions while yellow are known to be expendable. This will help you determine where to set the values. The scores range from 2.96 (least "essential) to -6.89 (most "essential). Try it running this search by limiting the range from -6.89 to -4. Do you get the expected results based on the above graph and the number of genes returned in your search results?

Toxoplasma Informatics Resources	Identify Genes based on CRISPR Phenotype
Tell Us What You Think! The Bioinformatics Reso opinion matters! https://bit.ly/33Gpo51	Phenotype Score >=
Search for	-6.89
phen 8	Phenotype Score <=
Genes	-4
Phenotype	
	CRISPR 1,343 Genes

- What kinds of genes are in your results? What kinds of genes would you expect to be essential? One way to explore the data is to run a GO enrichment analysis to determine if any biological processes are enriched in your results. Give this a try. What do you results look like and do they make sense?

Step 1

iene Onto nd Gene Ontolog • Parameter	Dlogy Enrichment gy terms that are enriched in your go 's	ene result. <i>Read More</i>					[Rename This Analy	sis Duplicat
			Organism 😧 Ontology 🕜	Toxoplasma go Cellular Com Molecular FL Biological Pr	ondii GT1 C nponent unction vocess			
			Evidence 🕜	Computed Curated select all	clear all			
			Limit to GO Slim term	storia o No ○ Yes				
			P-Value cutoff 🚱	0.05 (0 - 1) Submit				
Analysis Re	sults: Q 243 rows				del Open in Revis	o III Show	Word Cloud	Download
⇔ GO Ø	🗢 GO Term 😧	Genes in the bkgd with this term	Genes in your ≎ result ? with this term	Percent of bkgd ≎ genes ? in your result	Fold enrichment	Odds ratio	1 P-value 😧	≑ Be
GO:0010467	gene expression	493	235	47.7	2.35	4.38	7.07e-48	6.50e-4
GO:0034645	cellular macromolecule	385	194	50.4	2.49	4.72	1.82e-43	8.36e-4

- How many of these genes are upregulated in *in vivo* chronic stages of *T. gondii*?
- Click on add step and elect the RNAseq searches under the Transcriptomics category

	÷ /	Add a step to your search strategy 🛛 🧕	×
My Search S Opened (1) All (1) Pu	Combine with other Genes	Choose how to combine with other Genes O 1 INTERSECT 2 O 1 INTERSECT 2 O 1 INTERSECT 2 O 1 INTERSECT 2 O	
Unnamed Search Strate	CRISPR 1,243 Gener Step 1 Step 2	Choose which Genes to combine. From	
CRISPR 1,343 Genes Step 1	Transform into related records	A new search A nexisting strategy My basket	
1,343 Genes (1,309 orth	CRISPR 1.243 Genes Step 1 Step 2	Cene models Gene Model Characteristics Transcriptomics G. Michael Review G. Bildener G. Bil	
Organism Filter	Use Genomic Colocation to		
select all [clear all] expand all]. Hide zero counts Search organisms Eimeriidae Sarcocystidae	combine with other features		
select all clear all expand all Hide zero counts	Step 1 Step 2		

• Find the experiment with chronic stages and run a search based on differentially expressed genes (DE).

 Add a step to your search strategy o 								
Search for Genes by RNA-Seq Evidence								
	The results will be	() intersected with v the results of Ste	p 1.					
Filter Data Sets: Chroni	• × •	Legend: DE Differential Expression FC Fold Change	P Percentile SA SenseAntisense					
🛓 Organism 🕜	Data Set		Choose a Search					
Toxoplasma gondii ME49	Transcriptome during acute	e or chronic infection in mouse brain (Pittman et al.)	DE					

• Intersect genes that are 2-fold upregulated in chronic stages compared to acute stages.

•	Add a step to your search strategy 🤨
() E	kperiment
0	Acute and chronic T.gondii infection of mouse. unstranded
0 R	eference Sample
0	acute infection 10 days p.i. chronic infection 28 days p.i.
8 C	omparator Sample
0 0	acute infection 10 days p.i. chronic infection 28 days p.i.
🛛 Di	rection
L	ip-regulated
0 fo	ld difference >=
2	
? ac	ljusted P value less than or equal to
0.	1

• Did you get zero results? This is to be expected since the CRISPR data was analyzed using the GT1 strain of *Toxoplasma* and the RNA-Seq data is from the ME49 strain. How can you fix this?

• Hint: transform the results in step 2 from *T. gondii* ME49 to *T. gondii* GT1. Click on the step edit button (move your mouse over the step and select edit).

• Select orthologs from the menu items at the top of the pop window.

• Select *T. gondii* GT1 from the list of organisms and click on Run Step.

1 selected, out of 31	
add these clear these select only these select all clear all	
gt1	x
 Sarcocystidae Toxoplasma V Toxoplasma gondii GT1 	
add these clear these select only these select all clear all	
Currencia Outbalana Outba	

Run Step

• Now what do your results look like?

3. Identify essential *Plasmodium falciparum* genes that are highly expressed in schizont stages of the parasite.

Note for this exercise use https://plasmodb.org

- You can start by exploring the phenotype data in PlasmoDB.
- Select and run the search associated with the dataset: piggyBac insertion mutagenesis (John Adams).

Search for ...

	Identify Genes based on Phenotype Evidence			
2 ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹	Filter Data Sets:	Q 0 Legend: MGS Association to Genomic Segments CP Curated Phenotype 5 Similarity	Similarity of Association PT Phenotype Text	
phen 🗶 🖓	Li Organism 😧	≎ Data Set	Choose a Search	
	Plasmodium berghei ANKA	P. berghei knockout (PlasmoGEM) growth phenotypes (Bushell, Gomes and Sanderson et al.)	CP	
Genes	Plasmodium berghei ANKA Plasmodium fakciparum 3D7 Plasmodium yoelii yoelii 17XNL	RMgmDB - Rodent Malaria genetically modified Parasites (Chris J. Janse)	PT	
Phenotype	Plasmodium falciparum 3D7	eQTL for HB3, Dd2 and 34 progeny (Gonzales et al.)	AGS S SA	
Q Phenotype Evidence	Plasmodium falciparum 3D7	😡 piggyBac Insertion mutagenesis (John Adams)		

- Configure the search to identify genes with a *mutant fitness score* of less that -3. Note that you can select the range by either clicking and dragging you mouse over the histogram or by typing the values in the selection boxes.

Identify Genes based on piggyBac insertion mutagenesis (mutant fitness and mutagenesis index scores)

5,385 Genes Total	856 of 5,385 Genes selected Mutant Fitness Score ×
xpand all collapse all Find a variable Q 0	Mutant Fitness Score
Mutagenesis Index Score	Min: -4.09 Mean: -2.25 Median: -2.68 Max: 2.77
	Select Mutant Fitness Score from 44.094 to 5,385 (100%) of 5,385 Genes have data for this val

- How many genes did you identify? Which gene has the lowest fitness score? Note that you might need to add the fitness score column, by clicking on add columns then filtering the options with the word "fitness".

Unnamed Search Strategy * 🥜					
pB MIS/MFS 265 Gener Step 1		Select Columns	×	Ö	2 B < 6 x
856 Genes (830 ortholog groups) Revise this	Search Genome View	Update Columns			
Organism Filter select all clear all collapse all Hide zero counts	Genes: 856 Transcripts: 869	 fitn Phenotype Pfalciparum 3D7 piggyBac inse mutagenesis - mutant fitness s 	artion	Download 🔒 Add to Baske	t Add Columns
Hepatocystis sp. ex Piliocolobus 0 Heptroceles 2019 Plasmodium 856 select all clear all expand all collapse all	🗢 Gene ID 🗢	select air roco.	Location 🕑 🔇	Product Description	P.falciparum 3D7 piggyBac insertion mutagenesis - mutant fitness score
Hide zero counts	🕀 PF3D7_0914400 PF3	Plasmodium falciparum 3D7	Pf3D7_09_v3:617,808619,842(+)	protein KIC3	-4.094
Hide O	⊕ PF3D7_1144100 PF3	Plasmodium falciparum 3D7	Pf3D7_11_v3:1,756,4821,757,258(-)	mitochondrial large subunit ribosomal protein, putative	-4.036
•	B PF3D7_0728400 PF3	Plasmodium falciparum 3D7	Pf3D7_07_v3:1,214,8621,215,834(+)	SDH5 domain-containing protein, putative	-4.024

- Click on Add Step and find the RNA-Seq searches.

	Add a step to your search strategy •	×
My Search Strateg	Combine with other Genes Combine With other	
PB MIS/MFS Bit General Sep-1 B556 Genes (830 ortholog groups)	Transform into related records A new search A new search A new search My basket My basket Gene models Categorizations Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence Microarry Foldence	
Organism Filter sect al clear al regard al collapse al His zero courts Centro organisms. Hepatocyclis go. vn Nicoloclous Someror al collapse al Someror al collapse al His zero courts	Use Genomic Colocation to combine with other features	

- Find the search called "Intraerythrocytic development cycle transcriptome (2019)" and select the percentile search.

Search for Genes by RNA-Seq Evidence

	The results will be	() intersected with $ $ \checkmark the results of Step	o 2.
Filter Data Sets: intraer	•	Legend: DE Differential Expression FC Fold Change	P Percentile SA SenseAntisense
🛓 Organism 🕜	Data Set		Choose a Search
Plasmodium falciparum 3D7	Intraerythrocytic developm	ent cycle transcriptome (2019) (Wichers et al. 2019)	DE FC P
Plasmodium falciparum 3D7	Intraerythrocytic developm	ent cycle transcriptome (2018) (Toenhake et al.)	FC P SA
Plasmodium falciparum 3D7	Transcriptome during intra-	erythrocytic development (Bartfai et al.)	FC
Plasmodium falciparum 3D7	Blood stage transcriptome	(3D7) (Otto et al.)	FC P
Plasmodium falciparum 3D7	Intraerythrocytic cycle trans	scriptome (3D7) (Hoeijmakers et al.)	FC P SA
Plasmodium falciparum 3D7	Strand specific transcriptor	ne of the intraerythrocytic developmental cycle (Siegel et al.)	FC P SA
Plasmodium vivax P01	Transcription profile of intra	aerythrocytic cycle (Zhu et al.)	FC

- Configure the search to identify all genes that are in the 80-100 percentile in all three available schizont samples.
 Remember to change the parameter to require matching all samples.
- How many genes did you get? Are any of these genes interesting? How many are predicted to be secreted?

 How did you identify the secreted genes?
 Hint, add a step and search for genes that have a predicted secretory signal peptide.

- 4. Identify Neurospora crassa genes that affect conidia formation. Note for the exercise use <u>https://fungidb.org</u>
 - Start by locating the phenotype searches.

FungiDB Release 52 20 May 2021 Fungal & Oomycete Informatics Resources	Autanium anysponum II. sp. melionia 24400 Autanium vernetillioloidia 7400 Aitatopiasma capavilari BNAA31 Aitatopiasma capavilari BNAA31 Aitatopiasma capavilari BNAA31 Aitytophitona aitopiasta T33-4 Aitytophitona aitopiasta T33-4 Aitytophitona aitopiasta T33-4 Aitytophitona aitopiasta T33-4 Aitopiasta T43-74-70-15 Aitopiasta definari Aki 0+880 Aitopiasta definari Aki 0+880 Aitopiasta definari Aki 0+880 Aitopiasta definari Aki 0+700 Thirohodema viensi G2-78 Lutatopia mayata S11		
Search Ior	Aspergillus furnigatus A/293 Aspergillus rictularis FGSC A4 Aspergillus right CBS 13.88 Aspergillus oryzae RIB40	Manually Curated Aspergillus Phenotypes (VEuPathD8)	90
pheno 🗶 🛛	Cryptococcus gattil WM276 Cryptococcus neoformans var. grubil H99 Cryptococcus neoformans var. neoformans JEC21	Manually Curated Cryptococcus Phenotypes (VEuPathD8)	69
	Fusarium graminearum PH-1	Manually Curated Fusarium Phenotypes (VEuPathDB)	CP .
Genes	Neurospora crassa OR74A	Weurospora Genome Project Phenotype Image Collection (Dunlap et al.)	
	Neurospora crassa OR74A	O Phenotypic analysis of Neurospora crassa knockout mutants (Borkovich et al.)	
Phenotype	Pyricularia oryzae 70-15	Manually Curated Pyricularia Phenotypes (VEuPathDB)	प्र म
Q Phenotype Evidence			

- This search provides you the option to filter based on categories on the left. Notice how when you select a different category on the left the filtering options in the middle change. Select the **Conidia number** category. Next select the "Reduced" value.

d Phenotype					
ntify Genes based on Knock	cout Mutants				
Reset values					
enes					
1,283 Genes Total	99 of 1,283 Genes selected Conidia Numb	ber ×			
expand all collapse all Find a variable Q	Conidia Number				
expand all collapse all (Find a variable Q)	Conidia Number			1,283 (100%) of 1,283 Genes h	ave data for this variable
expand all Lollapse all Find a variable Q & Markan Aerial Hyphae Height Markan Ascospore Number Markan Baak Hyphae Growth Rate	Conidia Number The conidia Number Conidia Number Conidia Number	 Remaining Genes () 1,283 (1003) 	 Genes 2 1,283 (100%) 	1,283 (100%) of 1,283 Genes ha	ave data for this variable
erpand all (collapse all Find a variable (all Articl Hyphae Height El Accespore Norphology El Ascespore Norphology El Candia Moyhelogy	Conidia Number Keep checked values at top Is Conidia Number Increased	 	 Genes 2 1,283 (100%) 12 (1%) 	1,283 (100%) of 1,283 Genes h Distribution 📀	ave data for this variable
erpand all (collapte all Find a variable Eld Arial Hyphae Height Accespore Morphology Accespore Mumber Ma Basal Hyphae Growth Rate Condia Morphology Condia Morphology	Conidia Number CN Keep checked values at top List Conidia Number Increased Normal	 	 Genes 2 1,283 (100%) 12 (1%) 1,154 (90%) 	1,283 (100%) of 1,283 Genes h Distribution 🚱	ave data for this variable
erpand all collapse all Find a variable	Conidia Number The checked values at top List Conidia Number Increased Not Formed	Remaining Gence Gence Genc Gence Gence	 Genes @ 1,283 (100%) 12 (1%) 1,154 (90%) 1 (<1%) 	1,283 (100%) of 1,283 Genes h Distribution 📀	ave data for this variable % (100%) (100%)
erpand all (collapse all Find a varitable All Ardiel Hyphae Height El Asceopter Normbelogy El Candia Korphology El Candia Korphology El Candia Korphology El Candia Komber Perthecia Komber	Conidia Number Keep checked values at top La Conidia Number Increased Normal Not Formed	 Remaining Genes () 1,283 (100x) 1,2 (15x) 1,1 (54 (90x)) 1 ((15x)) 1 (11x) 	 Genes 2 1,283 (100x) 12 (1%) 1,154 (90%) 1 (<1%) 	1,283 (100%) of 1,283 Genes h Distribution 😧	ave data for this variable
erpand all collapse all Find a variable All Active Hyphae Height Ascospore Morphology Ascospore Morphology Ascospore Number Condia Morphology Condia Morphology Pertituecia Morphology Pertituecia Number Protopertituecia Number	Conidia Number CN Keep checked values at top Lis Conidia Number Increased Normal Not Formed Not Formed Reduced Reduced Reduced	Remaining Genes Image: Comparison of the com	 Genes @ 1,283 (100%) 1,283 (100%) 1,154 (00%) 1 (*1%) 11 (1%) 99 (#%) 	1,283 (100%) of 1,283 Genes hi Distribution 😧	ave data for this variable (100%) (100%) (100%) (100%) (100%)

Notice that this search allows you to explore your results even before you click on the "Get Answer" button! Click around on the other categories on the left and see if the genes that are involved in a reduced number of conidia may also be involved in other phenotypes. For example, click on the Ascospore Number category, how maybe of your genes also have a phenotype with no ascospore formation?

😮 Genes

1,283 Genes Total		99 o	f 1,283 Genes selected Conidia Number :	k					
expand all collapse all									
Find a variable	Q 🕜	ASC	ospore Number						
🖽 Aerial Hyphae Height		Che	sk items below to apply this filter				1	283 (100%) of 1 283 Gene	s have data for this variab
E Ascospore Morphology								, (,,	
E Ascospore Number			LE Ascospore Number	\$	Remaining Genes 🕜	\$	Genes 🕜	Distribution 🕜	* 🕜
🔠 Basal Hyphae Growth Rate					99 (100%)	1,283	(100%)		
III Conidia Morphology			Normal		32 (32%)	1,043	(81%)		(3%)
i≣ Conidia Number			Not formed		56 (57%)	169	(13%)		(33%)
III Perithecia Morphology			Reduced		11 (11%)	65	(5%)		(17%)
I Perithecia Number			Increased		0 (0%)	2	(< 1%)		(0%)
E Protoperithecia Number			Severely Reduced		0 (0%)	5	(< 1%)		(0%)
			Severely reduced		0 (0%)	1	(< 1%)		(0%)

- Click on get answer. What kinds of genes are in your results? Try analysing the results to see if there are any biological processes enriched in your results.

Ko Mut 97 General Step 1				© ♂ ₽ < ⊕ ×
99 Genes (98 ortholog groups) Revise this set	arch			
	Gene Results Genome View Gene Ontology Enrichment X	Analyze Results		
Organism Filter				[Rename This Analysis Duplicate]
select all clear all expand all collapse all	Gene Ontology Enrichment			
Hide zero counts	Find Gene Ontology terms that are enriched in your gene result.	Read More		
(Search organisms Q) 🕄				
▶ Fungi 99				
▶ Oomycota 0		Organism 🕜	Neurospora crassa OR74A 🙂	
select all clear all expand all collapse all		Ontology 🕜	 Biological Process 	
Hide zero counts			 Cellular Component 	
			Molecular Function	
		Evidence 😮	Computed	
			Curated	
			select all clear all	
		Limit to GO Slim terms	0 O No	
			Yes	
		P-Value cutoff 🕜	0.05 0 (0-1)	
			Submit	^

Analysis Results:

Q 361 rows					Open in Revigo	Lill Show Wor	d Cloud 🕹 Dow	nload
≑ GO ✔	🗘 GO Term 🕑	Genes in the bkgd with this term	Genes in your result ? with this term	Percent of bkgd genes ? in your result		Odds ratio P	ļ≟ P-value ②	\$ B
GO:0070787	conidiophore development	84	26	31.0	22.87	44.43	1.32e-29	1.28e-2
GO:0032501	multicellular organismal process	194	33	17.0	12.57	22.24	2.22e-28	1.08e-2
GO:0061458	reproductive system development	184	32	17.4	12.85	22.51	8.32e-28	1.61e-2
GO:0048608	reproductive structure development	184	32	17.4	12.85	22.51	8.32e-28	1.61e-2
GO:0075259	spore-bearing structure development	184	32	17.4	12.85	22.51	8.32e-28	1.61e-2
GO:0048731	system development	185	32	17.3	12.78	22.36	9.97e-28	1.61e-2
GO:0007275	multicellular organism development	187	32	17.1	12.64	22.07	1.43e-27	1.98e î