RNA sequence data analysis via VEuPathDB Galaxy, Part I Uploading data and starting the workflow (Group Exercise)

Learning objectives:

- Become familiar with VEuPathDB Galaxy workspace
- Import data from EBI to the VEuPathDB Galaxy
- Create collections of datasets
- Run a pre-configured RNA-Seq workflow

VEuPathDB Galaxy-based workspace offers pre-loaded genomes, private data analysis and display, and the ability to share and export analysis results and also import certain datasets into private workspace within VEuPathDB (My Datasets section).

VEuPathDB Galaxy workspace can be accessed from the *My Workspace* tab on the home page of FungiDB or any other VEuPathDB site. To log in, users must have an account with FungiDB/VEuPathDB, which is free. After an account is created, users

receive access to the VEuPathDB Galaxy services and tools.

The Galaxy instance is not meant for long-term data storage. Datasets are automatically deleted after 60 days or when the total quota for all projects is reached. To save your data, download your analysis results locally and then *delete and purge* files to free up space for your next analysis.

Galaxy is an open, web-based platform for data intensive biomedical research. Galaxy allows you to perform, reproduce, and share complete analyses without the use of command line scripting. VEuPathDB developed its own Galaxy instance in collaboration with Globus Genomics. Many resources are available to learn how to use Galaxy. The following link has information about additional resources to help you learn how to use Galaxy:

https://wiki.galaxyproject.org/Learn#Galaxy_101

For this exercise, we will retrieve raw sequence files from a repository, assess the quality of the data, and then run the data through a workflow (or pipeline) that will align the data to a reference, calculate expression values and determine differential expression. Part 1, uploading data and starting the workflow will be performed today. The workflows will run overnight and we will view / interpret the results tomorrow in Part 2.

We will be working in groups. Each group will have 4-6 members. One person in the group will run the Galaxy controls on one computer. The other members' roles are to ensure that the correct datasets are used and that the correct workflow parameters are selected.

IMPORTANT During workshop we will NOT be using live sites to access VEuPathDB Galaxy. Use the link below to log in to the workshop VEuPathDB Galaxy with your FungiDB account. If you already have an account with any other VEuPathDB site, this log in will work in FungiDB. If you are creating a new account remember your password!

Section I: Setting up your VEuPathDB Galaxy account

Step 1: Access the VEuPathDB Galaxy instance at the following URL:

https://veupathdbworkshop.globusgenomics.org/

Log in to use eupathdbworkshop

Use your existing organizational login

e.g., university, national lab, facility, project

Step 2: On the next page you will be asked to define your organization. Choose VEuPathDB and click Continue.

Step 3: If you are not already logged into VEuPathDB you will be prompted to do so

VEuPathDB	~
Didn't find your organization? Then use Globus	ID to sign in. (What's this?)
Continue	
ME.I	DathDD
Eukaryotic P Informatics	r a LIIDD athogen, Vector & Host Resources
Please	log in
Email:	
Password:	
Login	Cancel
Forgot Password?	Register/Subscrib
	-

Step 4: Click on "continue" on the next page (no need to link an existing account).

now.

Welcome – You've Successfully Logged In

This is the first time you are accessing Globus with your **EuPathDB** login. If you have previously used Globus with another login you can link it to your **EuPathDB** login. When linked, both logins will be able to access the same Globus account permissions and history.

Continue Li

Link to an existing account

Why should I link accounts?

eupathdbworkshop would like to:

Know who you are in Globus.

Know some details about you.

✓ Transfer files using Globus Transfer (i)

Know your email address.

To work, the above will need to:

View your identities on Globus Auth (

Manage your Globus Groups (

By clicking "Allow", you allow eupathdbworkshop (this client has not provided terms of service or a privacy policy to Globus) to use the above listed information and services. You can rescind this and other consents at any time.

Allow Deny

Step 5: on the next window select the "non-profit" option and agree to the Terms of Service. Click continue.

Step 6: The next page will ask for permissions required to use this Galaxy instance. Click on "Allow"

Step 5: Congratulations, you are in!

The anatomy of the VEuPathDB Galaxy landing page.

The workspace has four major components:

- a) the top menu controls the main interface
- b) the left panel has a list of available tools
- c) the main welcome page is the interactive interface that houses preconfigured workflows, workflows editor, etc.
- d) the right panel provides access to histories, deleted datasets, and other useful functions

Section II: Importing data to Galaxy

There are multiple ways to important data into your Galaxy workspace. For this exercise, we will use the '**Get Data via Globus from the EBI: server using your unique file identifier**"

tool and enter the sequence repository sample IDs based on your group assignments (below). *Remember only one person in your group will be running the workflow*. Although all group members can sign up for an account for later use,

please only one person should start a workflow today because we do not want to overload the servers. The samples below were all generated by paired end sequencing; hence each sample ID will result in transferring two files to your galaxy history. The files are fastq files that are compressed (that is why they end in .gz = gzip).

Group assignments:

See separate group assignment sheet

Step 1: Click on the "**Globus Data Transfer**" link in the left-hand menu. This will reveal a list of options; click on "**Get Data via Globus from the EBI server**". ***important: do not select the option for transferring a collection.

Step 2: In the middle section enter the sample ID and choose whether the run was single or paired end. Click on Execute. Note that the sample ID resulted in importing two files one for each pair. Repeat this process for each sample you want to import. *If you are working with samples from two conditions and the experiment was done in triplicate and paired end sequenced then you should end up with 12 files; six from each condition.*

Get Data via Globus from the EBI se	erver using you	ır unique file	identifier	(Galaxy	Version 1.0.0)	- Options
Enter your ENA Sample id						
SAMN06339669						
i.e. SAMN00189025						
Data type to be transferred						
fastq						-
Single or Paired-Ended						
Paired						•
✓ Everute						
• Execute						
WARNING: Be careful not to exceed	disk quotas!					
1 job has been successfully added to the que	eue – resulting in the	following dataset	s:		History	<i>C</i> ‡ [
1: SRR5260546_1.fastq.gz					search datasets	C
					2 shown	
2: SKK5260546_2.fastq.gz					(empty)	S
When the job has been run the status will ch	ange from 'running' 1	to 'finished' if com	pleted succes	sfully or	O 2:	• # ×
error if problems were encountered.					SRR5260546_2.fastq	.gz
		r			SRR5260546_1.fastq	.gz
Complete	1	n proces	S S			
2: SRR5260546 2.fastq.qz 💿 🖉 🗶	<u></u> 4:		• / ×		1	
		00545_2.tastq.gz		-		
1: SKK5260546_1.fastq.gz	SRR52	60545_1.fastq.gz				

1

0

🔞 👌 globus Genomi

search tools

Step 3: If you are working with a dataset with biological replicates it is useful to organize the different conditions of your experiment into "Collections". For example, if your experiment included RNAseq from *Plasmodium falciparum* male gametocyte stages (three biological replicates) and erythrocytic stages (three biological replicates) and erythrocytic stages (three biological replicates), it is useful to organize these into two collections, one that includes all male gametocyte files and the other that includes all the erythrocytic stage files. Using collections also reduces the complexity of the Galaxy workflows. See below:

History	2 O 🗆	1. Click on the	History C 🕸 🗆	2. Select samples	History	C 🕈 🗆	2. Click on "For all
search datasets	٢	checkbox function	search datasets	that belong to the	Unnamed histor	ry 🔘	selected" and
5 shown, 18 hidden		"operation on	6 shown, 18 hidden	same condition	6 shown, 18 hidde	en (Tel Pala)	choose "Build a list
L5.41 GB		multiple datastest"	All None For all selected		15.41 GB	For all selected	of Datasets Pairs"
5: SRR526054. Operati	ons on multiple datasets		6: SRR5260544 2.fasto.oz		Hide dat	asets	
5: SRR5260544_1.fastq.	gz 👁 🖋 🗙		5: SRR5260544 1.fasto.gz		Unhide o	latasets	
: SRR5260545_2.fastq.	gz 👁 🖋 🗙		4: SBR5260545 2 fasto oz		Delete d	atasets datasets	
J: SRR5260545_1.fastq.	gz 💿 🖋 🗙		3: SRR5260545 1.fasto.gz		Permane	ntly delete datasets	
2: SRR5260546_2.fastq.	gz 👁 🖋 🗙		2: SRR5260546_2.fastq.gz		Build Da	taset List taset Pair	
L: SRR5260546 1.fastg.	qz (a) at the		✓ 1: SRR5260546 1.fastq.qz		Build Lis	t of Dataset Pairs	
Create a collection of paired da	tasets			Create a collection of paired datasets			
3 pairs created all datasets have been	successfully paired		×	3 pairs created: all datasets have been successfully paired			×
0 unpaired forward - ID filtered out)		Choose filters Clear filters	0 unpaired reverse - (0 filtered out)	0 unpaired forward - (0 fibered out)	°	hoose filters Clear filters	0 ungained reverse - 13 filtered out
	\$883260544_1.fasto.ga	3 paired Unpair all SRR5260544,fasta • SRR5260544	2 fanta ge	SUISS	60544_1.fasta.gz 🔶	3 paired Unpair all M1	13260544,2 Annu 68
	SRR5260545_1.famo.ga	SRR5260545.faing (# 5885260545	2 June ga	54052	60545_1.fastq.gz 🔶	M2	13260545_2.fastq.gz
4. Usually check this	the corr and giv	rect pairs are auto-sel ect pairs are auto-sel e each pair a meaning click on the paired no	ected. Double gful name. To ame in the	5. Once you ar collection a me condition nam	e done re eaningful e. Then cl	naming the name – for lick on <mark>Creat</mark>	pairs, give the example, use the te List
change th	ie manne,						
change th center an	d renam	e it	ensions from pair names? 👩 Hide original elements? 🗌				Remove file extensions from pair names?
change th center an	d renam	e it Remove for some for your new list	ensions from pair names? 🛃 Hide original elements?			Name: Male gametocytes	Remove file extensions from pair names? 🍞 Hide original elements? 🗌

Section II: Running a workflow in Galaxy

You can create your own workflows in galaxy based on your needs. The tools in the left section can all be added and configured as steps in a workflow that can be run on appropriate datasets. For this exercise we will use a preconfigured workflow that does the following main things:

- 1. Analyzes the reads in your files and generates FASTQC reports.
- 2. Trims the reads based on their quality scores and adaptor sequences (Trimmomatic).
- 3. Aligns the reads to a reference genome using HISAT2 and generates coverage plots.
- 4. Determines read counts per gene (HTSeq)

College College -		é Trimmomatic 😁				Sebtras count -		& DECan2
- First				PhisA12		Priseq-count		✓ UESeq2
Sampleoharb@pennmedicine.		B1/B2 pair	6	Delired reads	e per	File	0	file
openniedu	\cup	faste out paired		output_alignments (bam)		counts (tabular)		Factor 1 > Factor level 2 > Counts
output		faste out unrelated				counts (tabular)		file
~				· · · · · · · · · · · · · · · · · · ·		othercounts (tabular)	1	deseq_out (tabular)
- Sample 2		fastq_out_r1_paired		PHISAT2 X		samoutfile (bam)		deseq_out_filtered (tabular)
output	<u> </u>	fastq_out_r2_paired 🗅 🛛 🖸		Paired reads				plots (pdf)
		fastq_out_r1_unpaired 🗅 🛛 🛛 🔘	/	output_alignments (bam)				
	11	fastq_out_r2_unpaired 🗅 🛛 🔘	5			5 🗅 BAM alignment file		
		fastq_out 🗅 🛛 🖸			- 11	output (bigwig) 🗀 🏾 🏮 🧕		
	11		1					
	1/	<pre></pre>	1			✤ htseq-count ¥		
		Short read data from your current			V_	CAligned SAM/BAM		
		history				File		
		Oontaminant list			1	counts (tabular) 🗀 🛛 💿 🧔		
	1 1	Submodule and Limit specifing file			- /	othercounts (tabular)🗅 📀		
	1 /	html_file (html) 🗅 🍵 🧯 🤅				samoutfile (bam) 🗀 🛛 📀		
	1 /	text_file (txt)						
						F BAM to BigWig X		
	\mathbf{V}	✗ Trimmomatic ★				BAM alignment file		
	Y_	Select FASTQ dataset collection with				output (bigwig)		
		R1/R2 pair						
	/	fastq_out_paired 🗅 👘 🖓						
	/	fastq_out_unpaired 🗅 🛛 🔘						
		fastq_out_r1_paired 🗅 🛛 🖸						
		fastq_out_r2_paired						
		fasto out r1 unpaired						
		faste out r2 uppaired						
		rastq_out						
			1					
		₣ FastQC ★						
		Short read data from your current						
		Contaminant list						
		html file (html)	l					
		······	ĺ					
		text_nie (txt)	j					

5. Determines differential expression of genes between samples (DESeq2).

Add

Galaxy Project (https://usegalaxy.org/) Trimmomatic manual FastQC HISAT2 <u>HTseq</u> DEseq2

To use one of the VEuPathDB preconfigured workflows, go to the Galaxy home page and select the workflow that you would like to run. For this exercise "Workflow for paired-end unstranded reads" – click on this workflow to run it

စ္ဖာ္ဘဲ globus Genomics	Analyze Data Workflow Shared Data + Visualization + Help + User +	Usi	ing 1.1 TB
Tools		History	€ ♦ 🗆
search tools	Get started with VEuPathDB pre-configured workflows:	search datasets	0
VEUPATHDB APPLICATIONS	OrthoMCL	tpm test	
VEuPathDB Export Tools VEuPathDB OrthoMCL Tools	This workflow uses BLASTP and the OrthoMCL algorithm to assign your set of proteins to OrthoMCL groups. Version OG6r1 is the latest set of groups (as of April 2020), but you can also select the previous set (OG5). Explore this OrthoMCL workflow tutorial to learn more.	15 shown 7.18 GB	۲ ک
VEuPathDB RNA-Seq Tools	Workflow to map your proteins to OrthoMCL groups	a list of 4 datasets	*
DATA TRANSFER Globus Data Transfer	RNA-seq	13: BAM to BigWig on collect	tion 5 🗙
Get Data via Globus High speed	Use the following workflows to analyze your FASTQ files. The workflows use FASTQ groomer and Trimmomatic for preparation of reads. EASTQC for requesting statistics, and HISAT2 for manying reads to a VEWBythDB reference genome. Choose the appropriate	a list of 2 datasets	
Get Flowcell sample FastQ per lane via Globus Transfer FASTQ	workflow based on your input data and your desired analysis. Explore this RNA-Seq export tutorial to learn about exporting your workflow tasted to your input data and your desired analysis. Explore this RNA-Seq export tutorial to learn about exporting your workflow results to VEuPathD8.	12: BAM to BigWig on data 55	● & ×
from Globus to Galaxy	Examine genome coverage and calculate TPM for each gene	11: BAM to BigWig on data 54	● / ×
Get Data via Globus from the EBI server using your unique file identifier	In addition to the tools described above, these workflows use three tools (barnCoverage, htseq-count, HTSeqCount(ToPM) to generate BigWig and TPM files that can be analyzed on VLWarbADB, in Calaxy, or on your computer. The workflows take any number of samples and processes them in parallel. To export the results to VEuPathDB, use the "RNA-Seq to VEuPathDB' tool.	10: BAM to BigWig on collect	tion 5 🗙
Get Data with BioProject ID from the EBI server using SRA ID	Workflow for paired-end standed reads Workflow for paired-end unstranded reads Workflow for single-end stranded reads	a list of 2 datasets 9: BAM to BigWig on data 52	⊕ # X
server (collections) using your unique file identifier	 Worknow tor single-end unstranded reads Identify genes with statistically significant expression differences between two samples In addition to the tools described above, these workflows use three tools (htseq-count, DESeq2, Bam to BioWig) to determine whether 	8: BAM to BigWig on data 51	⊕ / ×
Get BDBag from MINID to collection transfer data given a MINID to a collection	each gene exhibits differential expression and to generate BigWig coverage files. The output files can be analyzed in Galaxy or on your computer. The workflows compare two samples with any number of replicates. To export your BigWig files to VEuPathDB, use the "Biowine Files to VEuPathDB tool. To lifer your DESear Posult file and obtain a set of Cene Dis that chance sionificanth' (defaults: fold-	7: Test TPMs for Eve a list of 4 datasets	×
Send Data via Globus Transfers data via Globus	change>=2 and adj-p<=0.05; these can be changed), use this workflow. Copy and paste the Gene IDs into the 'identify Genes based on Gene ID(s)' question on a VEuPathDB website, as seen here for the PlasmoDB site.	6: HTSeqCountToTPM on co n 71: gene expression	llectio 🗙
Send Multiple Data via Globus Transfers data via Globus.	Workflow for paired-end stranded reads Workflow for paired-end unstranded reads Workflow for single-end stranded reads	a list of 2 datasets 5: FC16	• / ×
S3 Get Data Get data from S3	Workflow for single-end unstranded reads	4: FC6	• / x
S3 Send Data Send data to S3	Variant calling	2: HTConCountToTDM on co	llectio
S3 Send Multiple Data Send data to S3	Use the following workflows to analyze your FASTQ flies. The workflows use Sickle for preparation of reads, Bowtie2 for mapping reads to a VEuPathD8 reference genome, Freebayes for variant detection, SnpEff to evaluate the effect of variants, and SnpSift for filtering	 n 65: gene expression a list of 2 datasets 	x

- Configure your workflow there are 1: Input Dataset Collection - Sample 1 53: Erythrocyte_stages_asexual multiple steps in the workflow, but you do <u>2: Input Dataset Collection - Sample 2</u> not need to configure all of them. For the 54: Male_gametocytes purpose of this exercise, you will need to configure the following: a. Select the input dataset collections. These are the collections of fastq files you just created. Workflow steps 1-2 Input data format allow you to select the datasets.
 - FASTQ Groomer convert between various FASTQ quality formats (Galaxy Version 1.0.4) FastQC Read Quality reports (Galaxy Version FASTQC: 0.11.3) FASTQ Groomer convert between various FASTQ quality formats (Galaxy Version 1.0.4) FastQC Read Quality reports (Galaxy Version FASTQC: 0.11.3) F Trimmomatic flexible read trimming tool for Illumina NGS data (Galaxy Version 0.36.5) F Trimmomatic flexible read trimming tool for Illumina NGS data (Galaxy Version 0.36.5) HISAT2 A fast and sensitive alignment program (Galaxy Version 2.0.5) FASTQ Single end or paired reads Collection of paired reads Paired reads Output dataset 'fastq_out_paired' from step 7 Paired-end options Use default values Source for the reference genome to align against Use a built-in genome Select a reference genome PlasmoDB-51_PbergheiANKA_Genome If your genome of interest is not listed, contact the Galaxy team

b. Some tools in the workflow require that you select the reference genome to be used. In this

•

Some tools in the	Source for the reference genome to align against	FungiDB-51_CaurisB112
workflow require that	Use a built-in genome	FungiDB-51_CaurisB112 FungiDB-51_CaurisB112
you select the	Select a reference genome	FungiDB-51_CaurisB112 FungiDB-51_CgattiiVGII
reference genome to	FungiDB-51_CneoformansH99_Genome	FungiDB-51_Cneoforma
be used. In this	If your genome of interest is not listed, contact the Galaxy team	FungiDB-51_Cneoforma
workflow, both HISAT2	and HTSeg reguire this (note that	FungiDB-51_Edermatitio

each of these tools is in the workflow twice since you have two collections). It is critical that you select the correct genome that matches the experimental organism. So, for example, if your experiment was performed using Cryptococcus neoformans H99, the reference genome you select should be FungiDB-51_CneoformansH99_Genome as shown in the image to the right.

c. Two additional parameters to check in the htseq-count step are "Feature type" and "ID Attribute". They should be set to "exon" and "gene_id", respectively. Be aware that these are case-sensitive, so "Exon" is not correct but "exon" is correct. Here is how that step should look:

d. Once you are sure everything is configured correctly, click on "Run Workflow" at the top.

orkflow: RNASeqPairedEnd_Replicates_Collections	✓ Run workflow
Aligned SAM/BAM File Output dataset 'output_alignments' from step 7	
Is this library mate-paired?	
paired-end	
Will you select an annotation file from your history or use a built-in gff3 file?	
Use a built-in annotation	

The steps will start running in the history section on the right. Grey means they are waiting to start. Yellow means they are running. Green means they have completed. Red means there was an error in the step.

Practice working with Galaxy editor (optional)

You can create your own workflows. The tools can all be added and configured in a interactive workflow editor.

- Navigate to the Workflow tab from the main menu at the top and select
- Left click on the drop-down icon within the workflow you want to modify and select the "Edit" option.

Sample workflow steps:

- Delete HISAT2 step by clicking on the " x " in the top right corner.
- Locate the HISAT2 tool in the Tools panel and click to insert it back into the workflow.

• Re-establish connections for HISAT2

 Click on the arrow in the step before HISAT2 and drag to the appropriate input in HISAT2 tool.

Trimmomatic X		🗲 bamCoverage 🗙
□Select FASTQ dataset collection with		BAM/CRAM file
1/R2 pair		outFileName (bigwig, bedgraph) :
astq_out_paired		
ustq_out_unpaired		
astq_out_r1_paired	output alignments (ham)	🖌 htseq-count 🛛 🗙
astq_out_r2_paired		CAligned SAM/BAM
ustg_out_r1_unpaired		File
ustq_out_r2_unpaired		counts (tabular)
istq_out	9	chercounts (tabular)
		samoutfile (bam)

• What happens? Can you reconnect it?

Note: Sometimes you may be unable to re-establish connection. When this happens, take a look at the tool documentation notes in the right panel, check you r selection for single-read or paired-end setting in particular (paired-end setting must be selected if you are dealing with reverse and forward reads).

Detail	s
Save	AT2 A fast and
Save As	ive alignment
Run	m (Galaxy Version 2.0.5)
Edit Attributes	
Auto Re-layout	
Close	
/ · · · · · · · · · · · · · · · ·	ep label.
Annota	ition

Now that you have learned the principals of workflow editing, you can either practice saving the workflow by clicking on the wheel at the far top corner or simply existing the workflow editor without saving.